(2y^2+7)+(61-y^2)+63=180

Simple and best practice solution for (2y^2+7)+(61-y^2)+63=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2y^2+7)+(61-y^2)+63=180 equation:



(2y^2+7)+(61-y^2)+63=180
We move all terms to the left:
(2y^2+7)+(61-y^2)+63-(180)=0
We add all the numbers together, and all the variables
(61-y^2)+(2y^2+7)-117=0
We get rid of parentheses
-y^2+2y^2+61+7-117=0
We add all the numbers together, and all the variables
y^2-49=0
a = 1; b = 0; c = -49;
Δ = b2-4ac
Δ = 02-4·1·(-49)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{196}=14$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14}{2*1}=\frac{-14}{2} =-7 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14}{2*1}=\frac{14}{2} =7 $

See similar equations:

| 4n-2(3-n)=-13-6) | | 8(x-6)+10x=8.50 | | Y+5+2y=180 | | f+515=983 | | 6+7x-9=18 | | 27-2x=11+6 | | 7y-1=3y-13 | | 11-17=-7b+8b | | p*38-76=38 | | 5/6h-7/12=3/4h—13/6 | | 8(x+6)+10x=8.50 | | 5.4=a-(-1.8)a | | 10x+12=2(5X+7) | | 20-6a=8 | | 4^3*4^n=4^2 | | 5^{3x}=42 | | x=17*10 | | ¼(k-1)=7 | | 25-4f=10-2.5f | | 8y+17=-11 | | 25-x=40-x | | x/6+2=16* | | 1)−30=5(x+1) | | 3r²=-28+25r | | 9^3b=27^2b | | 18+36=6(4k-3) | | 6x-1+3x-5x=15 | | -22=-4+3k | | 9/x+9=8/x+4 | | 3x+58+90=180 | | |10-k|=28 | | 5x+2(x-3)=4(x-5)-1 |

Equations solver categories